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Subsurface deformations in nematic liquid crystals
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The existence of subsurface deformations in a nematic liquid crystal sample of finite thickness is
considered from a molecular point of view. A lattice approximation is used to take into account the
intermolecular interactions responsible for the nematic phase. The analysis shows that for the Maier-
Saupe interaction law the director profile is a smooth function in the whole sample. In contrast,
in the framework of our simple model, for the induced-dipole-induced-dipole interaction law the
director profile presents a large subsurface deformation. The results of our calculation are compared
with the elastic theories for nematic liquid crystals recently proposed. In particular it is shown
that the intermolecular interactions responsible for the effective splay-bend elastic constant are the
origin for the subsurface discontinuity in pretilted nematic liquid crystal samples. Our predictions
are obviously limited by the applicability of the naive model considered in the present analysis.

PACS number(s): 61.30.Gd, 61.30.Cz, 61.16.Ch, 81.10.Aj

I. INTRODUCTION

Recently the elastic theory of nematic liquid crystals
(NLC) has been the subject of a renewed interest. This
is mainly connected with the effect of the surfaces on
the NLC orientation in samples of finite volume. Despite
the fact that the bulk elastic properties of the NLC are
well understood in terms of Frank theory [1], the sur-
face description is far from being complete. The surface
contributions to the total free energy f have two sources.
One is due to the NLC-substrate interaction fsx, and the
other one fyn is an intrinsic property of the NLC. This
last term follows from spatial variation of scalar order pa-
rameter (f1), incomplete intermolecular interaction (f2),
and from bulk elastic terms that can be integrated to the
surface (f3) [2]. fi1 takes its origin from the spatial de-
pendence of the NLC elastic constants, due to the fact
that they are proportional to the square of the scalar or-
der parameter. f is connected to the reduced symmetry
of the NLC phase near the limiting surface. In contrast,
f3 is mainly a bulk elastic term. The contributions fy,
f2, and f3 depend on the intermolecular interaction of
the NLC phase. Let g(#, 7', 7) be the interaction energy
between two NLC molecules in B and R' = R + 7 whose
molecular orientations are # = #(R) and 7 = F(R'). In
general g(7, 7', 7) depends not only on the relative orien-
tation of 7/ with respect to & but also on (7-%) and (7' -4)
where @ = 7/r. The general expression for g(#,#,7) can
be written as [3]

9@, 7, 7) = =Y Jape(r) (- 7)(F - @)°(F - @)°, (1)

a,b,c

where the coupling coefficients depend only on the mod-
ulus of 7. By means of Eq. (1) it is possible to recover
all the intermolecular interaction laws used until now
for NLC [4]. We define intermolecular forces for which
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b = ¢ = 0 as being of the first type and those depend-
ing also on (7 - @) and on (7 - @) as being of the second
type. As shown in [5], f2 contains an anisotropic part,
depending on the NLC orientation, only for intermolec-
ular forces of the second type. On the contrary the f;
contribution is equivalent to an anisotropic surface en-
ergy for both kinds of intermolecular forces [2]. Finally
the f3 term is the sum of the well-known elastic contri-
butions kg4 div (71 div 7 + 7 X rot ) and kq3 div (7 div 71),
where ko4 is the mixed saddle-splay elastic constant, ki3
is the effective splay-bend elastic constant [6], and 7 is
the NLC director defined as the statistical average of /.
By using Eq. (1) and operating in a standard manner a
simple analysis shows that ky3 is different from zero only
for g of the second type [7]. This means that the effective
k13 does not vanish when f, contains an anisotropic part.
On the contrary kg4 is different from zero for both kinds
of intermolecular forces.

By means of the elastic theory it has been suggested
that the k13 term introduces a strong subsurface distor-
tion in the NLC profile [8-10] proportional to the ratio
k13/k, where k is the usual elastic constant. The analysis
performed in [8-10] is well known in the elastic theory
of solid materials, as discussed in [11]. Hinov [12] and
Pergamenshchik [13] questioned the existence of the sub-
surface distortion of the NLC orientation. According to
them, it is a mathematical artifact and hence it is not
physically acceptable. In this paper we want to recon-
sider the possible existence of a subsurface distortion in
NLC by starting directly from the molecular interaction
law given by Eq. (1). Our paper is organized as follows.
In Sec. II the physical model is described. The total free
energy of the system is evaluated in Sec. III for the sym-
metric and antisymmetric geometry. The main results of
the paper are stressed in Sec. IV.

II. PHYSICAL MODEL
The elastic theory is a macroscopic approach. It is

valid only in the limit in which the spatial variation of
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the average NLC orientation is very smooth [14]. When
a sharp variation of the profile is expected, the elastic
description no longer works. However, in order to obtain
information about the NLC orientation it is still possible
to analyze the problem by means of the total free energy
obtained from the intermolecular interaction. We shall
show that if g is of the first kind no sharp variation in the
NLC profile is found near the boundary. For this kind
of interaction law, as underlined above, fs reduces to an
isotropic term and k13 = 0. On the contrary, if g is of
the second type a subsurface sharp variation of the NLC
orientation appears. In this situation the anisotropic part
of f, does not vanish and kq3 # 0.

In our analysis we shall suppose that the NLC medium
may be approximated by a lattice of spacing p (at the
end, the limit p — p, where p is the larger molecular
dimension, should be performed). The NLC sample will
be assumed to be a slab of thickness d = Np where N is
the number of elementary cells along the z axis. Without
loss of generality, the director 7 is assumed to be every-
where parallel to the (y, z) plane and ¢ = arccos(7i - 2) is
the tilt angle. For simplicity, p = 1 (arbitrary units) and
we assume that ¢ = ¢(z) only, which is consistent with
the slab shape of the sample. The surface NLC orienta-
tions are ¢(+d/2) = ®, with ® being fixed by the surface
treatment without conical degeneracy. In other words the
substrate-NLC interaction is assumed to be short ranged
and very strong with respect to the intermolecular in-
teraction responsible for the NLC phase. This means
that ¢(+d/2) are independent of the bulk distortions.
This hypothesis is reasonable in the cases where the first
layer of NLC molecules is fixed by means of chemical
bonds much stronger than all interactions considered in
our model. Furthermore, the easy axes characterizing
the two surfaces are considered to be parallel. In this
framework, according to Pergamenshchik-Hinov theory
the stable NLC profile is ¢(z) = ®, Vz € (—d/2,d/2). A
very simple analysis shows that this is not true, when g is
of the second type. In the hypothesis of perfect nematic
order, ¥/ coincides with 7i and the total free energy co-
incides with the total intermolecular interaction energy.
This is equivalent to assuming the temperature is 7' = 0.
This hypothesis is usually made when the NLC elastic
constants are evaluated by means of a semimicroscopic
model [3]. However, as is shown in [15], a more realistic
calculation, in which the temperature is taken into ac-
count, does not change the main results of the simpler
model.

III. EVALUATION OF THE TOTAL FREE
ENERGY OF THE SYSTEM

The interaction energy between the molecule located
at (0,0, m) and the one at («, 3,7) will be indicated by
g9(0,0,m; a,B3,7). The total energy of the molecule in
(0,0,m) due to the interaction with all the molecules
placed in m 4+ 1 <~ < N/2 is given by

N/2

Gout(0,0,m) = Z Z 9(0,0,m;a, 8,7),

y=m+1l B=—o00 a=—00
()
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whereas the one due to the interaction with all the
molecules placed in the same plane m is

Y Y 00miasm, @)

B=—o00 a=—o0

Gin(0,0,m) =

in which a = 8 = 0 has to be excluded. All the molecules
on the same plane are equivalent because of the infinite
extension of the sample in the z and y directions with
respect to z. Hence the total energy per unit surface on
the plane z = m is Fyp, = 0 [Gout(0,0,m) + Gin(0,0,m)],
where o oc 1/p? is the molecular surface density, sup-
posed to be uniform. It follows that the total energy of
the slab, per unit area, is

N/2 N/2

> X Y Yo

m=—N/2 yY=m+1 B=—oc0 a=—0o0

F=o (0,0,m; e, B,7)

N/2

> Z Zg(OOmaﬁ,) (4)

m=—N/2 B=—oc0 a=—00

From the hypotheses mentioned above, the ele-
ments entering the intermolecular interaction energy
9(0,0,m; @, B,) are 7i(0,0,m) = jsin ¢(m) + k cos ¢(m)
and (o, B,7) = fsind)('y) + kcos ¢(v) for what con-
cern the NLC directors; 7(0,0,m;a,8,v) = ai + BF +
(y — m)E for the relative position of («,3,7) with re-
spect to (0,0,m). By means of 7(0,0,m;a,3,v) it is
possible to define the unit vector #(0,0,m;a,3,v) =
7(0,0,m; a, B8,7)/7(0,0,m; @, 3,7). In what follows we
will consider the intermolecular interaction energy of the

kind

g(7t, 7', 7) = ——[i -7’ — 3e(in-a) (7 -d)]? (5)
where C > 0 and € = 0 or 1. To € = 0 corresponds to
the well-known Maier-Saupe law [16], for which ki3 =
0 [5] and f2 is an isotropic contribution. In this case
the extended elastic theory [10] predicts no subsurface
deformations. To € = 1 corresponds the induced dipole-
induced dipole interaction, used for the NLC by Nehring
and Saupe [17]. For this kind of interaction, ki3 # 0
because g depends on 7 - % and 7’ - @ [5]. In the case in
which f, contains an anisotropic part and ki3 # 0 the
modified elastic theory predicts a subsurface distortion,
as discussed in [10].

The profile of the tilt angle will be assumed to be of
the kind

cosh(z/b)

¢(Z):‘I>—A+Ama (6)

in the above-mentioned symmetric case with strong an-
choring conditions. This is the simpler function de-
scribing a subsurface distortion symetrically placed at
the boundaries. In Eq. (6) b is a semimicroscopic
length, and A a parameter to be determined. By dis-
cretizing (6) and substituting it into (5) where 7 =
(0,0,m), @’ = 7(e,B,7), ¥ = 7(0,0,m;a,B,v) and
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@ = 4(0,0,m;0,3,7) we obtain g(0,0,m;a,3,v). The
total free energy per unit surface F' is given by (4), and
it becomes a function of A. The analysis shows that when
€ = 0, F reaches its minimum value for A = 0. This im-
plies that there is no subsurface distortion. When ¢ = 1
and ® = 7 /4, F is minimum for A =~ —0.82. This means
that in this case our simple model predicts a surface dis-
tortion.

Instead of assuming for ¢(z) the ansatz (6), remem-
bering the solution deduced by means of the extended
elastic theory for the same symmetric problem under con-
sideration [10], we can expand ¢(z) in Fourier’s series as
follows:

$(2) =@+ Copy cos [(2k + 1)% z] , (7)
k=0

satisfying the boundary conditions ¢(+d/2) = &. By
substituting (7) into (5) and then into (4), it is pos-
sible to deduce the Caiy; coefficients by imposing
dF(Cy)/dC, = 0 and d?F(C,)/dCn,* > 0 for n =
1,3,5,.... For € = 0 the analysis shows that C,, = 0
for all n. On the contrary, for € = 1 the profile ¢(z)
given by (7), minimizing F is of the kind represented
in Fig. 1. From this figure we may derive that (7) is
practically coincident with (6) in the bulk. They have
the same subsurface distortion. The other differences are
not important in the present analysis and they are due
only to the slow convergence of (7), because ¢(z) presents
a sharp variation near the surface.

We stress that the evaluated subsurface distortion is
due not only to the ki3 elastic term, but also to the
anisotropic part of f, [18]. In fact as has been shown
in [8], if k13 alone is responsible for the surface “discon-
tinuity,” the parameter A entering in Eq. (6) is

A(Ris) = 3722 sin(29), ®)
2 k

i.e., it depends on sin(2®). Hence A(ki3) vanishes for
® = 0 and & = /2. On the contrary, our molecular cal-
culations show that A depends on ® according to the law
A = ® — 7 /2. By taking into account the expression for
A(ky3) we deduce that for ® — 0, A(ky3) — 0 whereas
A — —7/2. This result clearly indicates that the sub-
surface distortion is due also to the anisotropic part of
fa.

Another interesting situation is the one in which
¢(£d/2) = £, corresponding to the antisymmetric ar-
rangement of the limiting surfaces. In this case, for
® > 7/4 the Pergamenshchik-Hinov theory predicts
¢(z) = [(m —2®)/d] z + 7 /2. In order to check the possi-
ble existence of a subsurface deformation, let us consider
a ¢(z) profile of the kind [10]

_m—=2(®+ A) ™ sinh(z/b)
(=) = d 2t Ay @

which reduces to a Hinov-Pergamenshchick one for 4 =
0. By operating in the same way as before, we can deter-
mine the A coefficient minimizing the total energy when
g(7,7',7) is given by (5). For € = 0 and ® = /3, A is
very small (= 0.02), whereas for ¢ = 1 it is rather large
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FIG. 1. Tilt angle profile ¢ = ¢(z) for ® = 7 /4. (a) ¢(z)
given by the extended elastic theory with the surface distor-
tion A = —0.82 minimizing F; (b) Fourier expansion of ¢(z)
(with 10 terms) minimizing F.

(A =~ 0.6). In the frame of the elastic theory the 4 # 0
even in the case € = 0 is due to the positional dependence
of the elastic constant [2]. This means that also in the
antisymmetric case, according to our naive model, the
surface distortion is mainly connected to the anisotropic
part of f, and to the splay-bend elastic constant. Again,
instead of using (9) we can expand ¢(z) in Fourier’s se-
ries. By minimizing the total energy given by (4) with
respect to the expansion coefficients, we obtain a profile
almost coincident with (9).

It is possible to apply our model to interaction laws
obtained by superposing, in a suitable manner, the
Maier-Saupe gyms and the induced-dipole—induced-dipole
gnNs interaction. In this case the effective interaction
could be written as g(@,7',7) = [wigms(®,7,7) +
wy gns (i, ', 7)] /(w1 + we). The analysis shows that for
wy > w, the surface distortion decreases, but still ex-
ists. For the symmetric case ¢(+d/2) = & = 27/9 and
w; = 10ws, or w; = 100w, the minimizing values are
A = —0.9 and A = —0.65, respectively. This means
that A decreases when wy/w; decreases, as expected.
The same calculation may be performed by considering
other cases of intermolecular forces giving rise to the NLC
phase [15].

IV. CONCLUSIONS

From the results reported above we can infer that a
subsurface distortion localized over a semimicroscopic
length b of the order of few molecular dimensions ex-
ists when the interaction energy g is of the second type.
Hence, in this boundary layer the usual elastic theory
cannot be applied and the usual bulk Frank elastic en-
ergy density has to be modified. This can be done by
including terms in the square of the second-order deriva-
tives of 7, as it has been proposed in [10]. Otherwise,
the problem is ill posed, and it cannot be solved in the
frame of continuous functions [9]. If this approach is con-
sidered not justified from a fundamental point of view, it
is possible to modify the surface free energy including in
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it also the destabilizing effect of the ki3 term and of the
anisotropic part of f,, as suggested in [19].

The particular interaction energy considered by us, i.e.,
the induced-dipole—induced-dipole interaction, for a sym-
metric arrangement, is such that (i) in the bulk the NLC
is not very far from the planar orientation everywhere
and (ii) a large subsurface distortion is present near the
limiting walls. By taking into account that bulk tilted
NLC samples can be easily made, we can deduce that
this kind of interaction is, probably, not the most im-
portant for the formation of the NLC phase. In other
words, this means that even though this interaction is
always present, other interactions play a more important
role in giving rise to the nematic phase. For this reason
recent papers (Ref. [15], and references therein) devoted
to the determination of the elastic constants by means
of statistical mechanics methods consider other kinds of
intermolecular potentials. An analysis of the importance
of the induced-dipole-induced-dipole in the NLC phase
is beyond the aim of this paper. A surface distortion is,
however, connected to this interaction. This distortion
disappears in the case of planar surface alignment. From
these results we can conclude that a surface deformation
can appear for intermolecular forces of the second type.
Such a surface distortion has been experimentally de-
tected by Guyot-Sionnest, Siung, and Shen [20] by means
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of the second harmonic generation technique. Our anal-
ysis furthermore shows that, in general, the molecular
alignment in the bulk of a NLC sample is different from
that of the first monolayer, and it is not solely determined
by the latter. The model presented in this paper is very
simple and its predictions are limited to its applicability
domain. However it shows that a subsurface deformation
can exist, although its real amplitude is probably not so
large as evaluated by us. To estimate it in a correct
manner the calculations presented in our paper should
be performed without the lattice approximation, or else
other kinds of randomness of the nematic molecules on
the lattice planes should be introduced. This is necessary
because a lattice approximation introduces easy direc-
tions parallel to the crystallographic axes. An analysis of
this kind is in progress [21]. It confirms the main results
obtained in our paper, but the surface “discontinuity” is
smaller than the one evaluated by us.
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